文
无锈钵山核桃
过去的这几年,在苏州常熟一家印刷电路板工厂的终检车间内,如何用眼睛精准发现瑕疵点是一线车间工人赵小米持续要做的“难”事。
作为质检工人的她,需要检测的电路板叫软硬结合板——尽管看起来只有指甲盖大小,但小到手机、车载镜头,智能耳机,大到5G通信基站,软硬结合板的应用极为广泛,制程工艺也已成熟,但在最后一环的质检上却存在着看不见的痛点。
赵小米的日常工作内容是“毙掉假点”。每天,车间的AVI外观检查机会对产品完成初次筛查,根据色差等寻找产品缺陷,但由于机器执行过程中的机械化,会存在“过杀现象”——大量没有瑕疵的产品被误判为“假点”,赵小米需要对着放大的照片,在电脑前确认与修正机器的筛查结果。
在不足一平方米的桌前,赵小米需要工作八个小时,一天需要看的图片约为1万张。即便是行业老人,也难以抵御这种重复劳动带来的疲倦:“从早到晚,看得真的很累”。
幸运的是,一切都在改变。今年,百度智能云将一套智能化的外观质检方案带到了赵小米所在的东南相互电子。算法在自动学习假点的特点后,建立相应的模型,为赵小米免去了大量不必要的工作。“现在,我们可能最多只要看多张图片左右。”
AI质检对这个车间带来的小改变,也深远影响着这家有着十多年历史的企业。东南相互电子IT经理胡平华自己算过一个账:“通过包括AI质检在内的智能化改造,生产周期缩短2天,品质良率提升近%,企业产值提升18%,人均产值提升42%,报废成本一年降低多万。”
改变不只发生在一家工厂,也并不局限于质检环节。今天,围绕中国制造业的转型,一副宏大的产业画卷已在这片土地上徐徐展开。
寻觅锚点:找到真需求的那颗“钉子”
乔舒亚·B·弗里曼在《巨兽:工厂与现代世界的形成》中,讲述了工业革命以来,超大工厂的发展历程,这些“巨兽”在世界经济周期中扮演着重要角色。
中国制造业的影子,早已深深嵌入全球供应链中,正如这位学者所说的:“中国的工业历程,是长达00年的大型工业历史上崭新的篇章,是现代世界舞台上闪亮登场的新角色。”
现实印证着他的判断。作为全世界唯一41个工业门类都齐全的国家,中国去年的制造业增加值占全球比重近1/,连续12年全球居首。
但庞大的工业产值背后,“巨兽们”所面临的“智能化程度低下”、“触网不深”的痛点,同样如影随形。
钛媒体研究院发布的数据显示,94.4%的中国企业未能做好部署智能制造的准备,生产设备数字化率只有44.8%,而数字化设备联网率仅为9.0%。
随着世界百年未有之大变局加速演进,全球产业链供应链面临重塑,中国制造业的数字化转型已不是“抢答题”,而是关乎从“中国制造”向“中国智造”转变的“必答题”。
这一过程中,尽管不少云巨头们,都已经意识到了算力与实体经济融合所带来的广阔市场,但在强调务实的工业场景里,当前的数字化转型逻辑仍然过于抽象。
一方面,区别于消费互联网,工业的底色是慢和磨,大多数云巨头在切入工业场景时仍遵循互联网企业“大力出奇迹”的打法,企图从“大切口”进入,用通用化的模型解决一切问题。
但不同工厂的数字化能力不同,同一工厂各个环节的数字化进程也不一,这就决定了通用方案并不能“一家通吃”。
另一方面,工业企业往往崇尚“成效先行”原则,看重投入产出比。我国工业曾长期依赖人口红利,制造业企业希望通过数字化实现降本增效,但也对毛利的要求也格外严苛。一旦发现服务厂商缺乏行业认知,投入与产出不对等,数据无法沉淀价值,就会心生退意。
因此,数字化转型不是“信息—工业”的粗暴加法,而是要深入产业肌理探寻病灶,以工业需求为主导,实现二者的有机结合。
在一次常熟工信局组织企业参访活动中,百度智能云发现了东南相互电子在质检环节上的痛点,这恰好与东南相互电子数字化改造的方向一致。
IT经理胡平华回忆到,受原材料成本上升与大客户影响,东南相互电子在年时曾面临亏损困境,但通过梳理生产的制程流程与作业方式,数字化的红利很快凸显,企业已不再为营收增长担忧。
像东南相互电子此类已完成自动化改造与早期数字化建设的企业,下一步